Abstract
The focus of this publication is on the development of lane-precise “Ground Truth” (GT) maps for the objective quality evaluation of automated driving functions. Therefore, attention is paid to the proper measurement of road geometry. The road geometry forms the basic layer of the HD maps. A new map format Curved Regular Objects (CRO) is developed, which is based on the idea of OpenCRG®. For the evaluation of current Advanced Driver Assistance Systems (ADAS) an accurate High Definition (HD) maps as GT are necessary. This makes it possible to locate the high precision vehicle position and motion with centimeter accuracy. The aim is to achievemaximumaccuracyoftheabsolute3Dpositionswhenmeasuringlanes. Thismethod for the generation of highly accurate GT maps promises an absolute accuracy of < ± 0.05 m. Various research activities benefit from the exact street reference at the Kempten University of Applied Sciences (UAS Kempten) in the Adrive Living Lab. First of all, the publication deals with the current Lane Keeping Assistant Systems (LKAS). The accuracy of the vehicle’slocalization on the GT map and an objective evaluation of the LKAS is shown. In addition, the CRO data is used as a virtual sensor for the steering assistant in real time. Another application is the Visual Range Finder (VRF), which requires less computation power by using the CRO data. In addition, a current LKAS camera sensor performance is evaluated using CRO maps.