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Abstract— Due to their capability of acquiring aerial imagery,
camera-equipped Unmanned Aerial Vehicles (UAVs) are very
cost-effective tools for acquiring traffic information. However,
not enough attention has been given to the validation of the
accuracy of these systems. In this paper, an analysis of the
most significant sources of error is done. This includes three
key components. First, a vehicle state estimation by means
of statistical filtering. Second, a quantification of the most
significant sources of error. Third, a benchmark of the estimated
state compared with state-of-the-art reference sensors. This
work presents ways to minimize the errors of the most relevant
sources. With these error reductions, camera-equipped UAVs
are very attractive tools for traffic data acquisition. The test
data and the source code are made publicly available.

I. INTRODUCTION AND MOTIVATION

Given that cars can harm humans due to malfunction,
they have to be tested extensively. Real-world data is a
key element for the development, testing and validation of
algorithms. However, the acquisition of real-world data is
resource intensive, which can in turn limit the amount of
available data for research.

Given their low cost, versatility and capability of acquiring
aerial imagery, camera-equipped UAVs are popular data
acquisition tools for automotive purposes. Having such video
material is highly practical, considering that many vehicle
motion models found in the literature describe the movement
of cars precisely from this perspective [1][2][3]. Also, since
the bird’s eye-view is less prone to occlusion problems, it is
a highly practical representation for traffic scenarios. Another
advantage is the ability of recording various objects with a
single device. Some relevant applications of aerial imagery
for automotive data acquisition include the traffic flow
analysis [4], the training of machine learning techniques [5]
and the validation of autonomous vehicles [6].

On the other hand, the accuracy validation of camera-
equipped UAVs has not received enough attention. When
deploying these devices for automotive data acquisition,
a series of sensor- and algorithm-related assumptions are
made, which translate to inaccuracies. When considering
the assumptions individually, the expected error might be
negligible. But when considered together, lead to statistically
significant errors.

The methodology used in the presented work evaluates the
accuracy of camera-equipped UAVs when used for vehicle
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state estimation. It also clarifies and quantifies the most
significant sources of error. The results can then be used
as a best practice guide to minimize errors in future works.

This work makes the following contributions:
It shows 1) a method for vehicle state estimation when

using a camera-equipped UAV as sensor, 2) an analysis and
quantification of the most significant sources of error, and 3) a
benchmark of the estimated vehicle state using state-of-the-art
reference sensors.

This paper is structured in the following manner: first, a
brief review on vehicle state estimation by means of cameras
is given (Section II). Then, the methodology for estimating
the vehicle state using aerial imagery is detailed (Section III).
Next, the most significant sources of error are analysed and
quantified (Section IV). Later, the estimated vehicle state is
benchmarked with state-of-the-art sensors (Section V). Finally,
the conclusions are presented (Section VI).

Vectors are represented in boldface and matrices in bold-
face, capital letters. All the units are given in the International
System of Units (SI), unless otherwise specified.

II. RELATED WORK

The task of using cameras for estimating the vehicle state is
not new, and the literature research reveals a wide variety of
approaches. An example of a concept using a fixed camera is
found on [7]. In that publication, the authors place a camera
in the middle of a road and pointed it alongside the traffic
flow. After detecting the surface plane, the distance from the
vehicles to the camera is calculated. An average velocity is
estimated from the calculated distance at each frame.

An example of inclusion of machine learning techniques
for velocity estimation can be found in [8]. There, the authors
document an algorithm that estimates the velocity and position
of vehicles relative to a monocular camera mounted on a
moving vehicle. Their method relies on extracting features
from videos, and later regress the velocity and position of
the vehicles by means of a Multi-Layer Perceptron.

Other works provide already processed video data. Ex-
amples of this are the HighD [9], the InD [10] and the
INTERACTION [11] datasets. The first one provides traffic
information for highway. The second and third provide traffic
information for urban environments.

The publication of [12] approximates the most to the
presented work. There, the authors equipped a test vehicle
with a Satellite Navigation (SatNav) system, which allows
to measure position and velocity. The main differences
from [12] are that in the presented work: 1) More state
variables are benchmarked. Not only the vehicle position
and velocity, but the vehicle acceleration, orientation, course



over ground and sideslip angle are compared too. 2) The
relief displacement [13] is corrected. This greatly improves
the accuracy of the estimated position. 3) The benchmark is
done using more accurate sensors. The sensor used in [12]
has an accuracy of 20 cm and 0.1 km/h in position and
velocity respectively [14]; while the one used in this work
has a position and velocity accuracy of 1 cm and 0.03 km/h
accordingly. A better sensor accuracy allows a pixel-accurate
comparison, which makes the benchmark more relevant.
4) Test data from a sample video and the source code are
publicly available on [15]. This helps future works to easily
generate a measurement vector from aerial imagery for the
Kalman Filter (KF), and to fine tune the Kalman gains for
specific applications.

III. VEHICLE STATE ESTIMATION

The vehicle state is estimated by means of a KF because it
allows to calculate state variables by system noise propagation.
The detailed process is explained next.

A. Coordinate Systems

The coordinate systems used in this work are explained in
what follows.

The vehicles move on the Local Tangent Plane (LTP).
This plane can be defined in the East-North-Up (ENU)
coordinate system, where xLTP points east, yLTP north and
zLTP upwards, with arbitrary origin oLTP on the surface of the
Earth. The Local Car Plane (LCP) is defined according to the
ISO8855:2011 norm, where xLCP points to the hood, yLCP
to the driver, zLCP upwards, with origin oLCP at the center
of sprung mass of the car. For simplification purposes, it is
assumed that 1) the xLCPyLCP-plane is parallel to the xLTPyLTP-
plane, 2) the centre of mass of the car is the same as its
geometrical centre, and 3) all sensors mounted on the vehicle
measure in the LCP. The Pixel Coordinate Frame (PCF) is
a bird’s-eye image projection of the LTP. It is composed by
the mutually perpendicular xPCF and yPCF axes, with origin
oPCF in one corner of the image. All quantities expressed in
PCF are given in pixels (px).

B. PCF Mapping

The first step for estimating the vehicle state is the mapping
of the PCF to the LTP. For this, Ground Control Points (GCPs)
are placed on the xLTPyLTP-plane, in such a way that are
visible on the PCF. The middle of the i-th GCP is defined in
LTP as

gi,LTP =
[
xi,LTP yi,LTP

]T
, (1)

and in PCF as

gi,PCF =
[
xi,PCF yi,PCF

]T
. (2)

The PCF and the LTP have different scales. The spatial
resolution α that relates both scales is calculated from two
GCPs by

α =

∣∣gi+1,LTP − gi,LTP

∣∣∣∣gi+1,PCF − gi,PCF

∣∣ . (3)

The i-th GCP can then be expressed in PCF and in meters by

g′i = gi,PCF · α =
[
x′i y′i

]T
. (4)

The orientation offset ξθimage from the LTP to the PCF is
calculated as

ξθimage = θ′i − θi,LTP, with (5)

θ′i = atan2(y′i+1 − y′i, x′i+1 − x′i), and (6)

θi,LTP = atan2(yi+1,LTP − yi,LTP, xi+1,LTP − xi,LTP). (7)

The GCP g′i is then rotated as follows

g′′i = R
(
ξθimage

)T
g′i, (8)

where R (·) is a 2D rotation matrix. Finally, the linear offsets
ξd from the LTP to the PCF are calculated by

ξd = g′′i − gi,LTP. (9)

So, a pixel pPCF =
[
xp,PCF yp,PCF

]T
on the PCF can be

mapped to the LTP by

pLTP
PCF =

(
R
(
ξθimage

)T
(pPCF · α)

)
− ξd. (10)

C. Measurement Vector Generation

The next step is to generate a measurement vector from the
videos recorded by the UAV and the parameters estimated in
Section III-B. This requires to process the video sequence for
detecting vehicles. The vehicle recognition can be achieved
by a variety of machine learning methods that can be found
in the literature, such as YOLO [16], DroNet [17] or R3 [18].
The first two output axes aligned bounding boxes; while the
third one outputs rotated bounding boxes. The latter greatly
improve the state estimation because they allow to calculate
the vehicle orientation and a much more precise geometrical
center.

The chosen detector for this work is Mask-RCNN [19][20].
The detailed methodology for processing video material to
obtain an adequate bounding box, as well as open source
code, can be found on [21].

The expected input from the UAV is a bounding box per
frame of the video sequence that 1) has 4 sides, 2) covers all
pixels corresponding to the detected shape of the vehicle, and
3) covers the least amount of pixels possible. The corners of
the bounding box are given by the intersection of its sides.
The i-th corner of the bounding box is defined in PCF as

bi =
[
xi,PCF yi,PCF

]T
, (11)

and the bounding box is defined in PCF as

BPCF =
[
b1 b2 b3 b4

]
. (12)

The corners of the bounding box are mapped to the LTP as
shown in the Equation (10) to obtain BLTP

PCF. Let bx and by
be horizontal vectors equal to the first and second rows of
BLTP

PCF respectively. Then, the geometric centre of the vehicle



Fig. 1. Shown is: the shape of the car as detected by Mask-RCNN
with an orange dashed line; the corresponding bounding box with a
green solid line; the corners of the bounding box, the geometrical
center and orientation of the car with red.

oin is calculated by

oin =

[
max(bx)+min(bx)

2
max(by)+min(by)

2

]
, (13)

where max and min are functions that choose respectively
the maximum and minimum value of a vector.

The vehicle dimensions are calculated next. Let s be a
vector containing the magnitude of the vectors that join the
element 1 of BPCF with all others, so that

s (1) < s (2) < s (3) . (14)

Then (s (1) · α) and (s (2) · α) are the estimated width and
length of the car in meters. Knowing this, the orientation
ψLTP

in of the vehicle is given by

ψLTP
in = atan2(yLTP

j,PCF − yLTP
1,PCF, x

LTP
j,PCF − xLTP

1,PCF), (15)

where j is the element of BPCF associated with s (2). The
measurement vector for the KF is then defined as

zin =
[
oT

in ψLTP
in

]T
. (16)

A graphical representation of the bounding box, vehicle
geometric centre and orientation is shown on the Figure 1.

D. Kalman Filter

Having the measurement vector, the next step is to estimate
the vehicle state. One of the most computationally efficient
methods for estimating the optimum state of a mobile object,
assuming Markovian-Gaussian random processes, is the
KF [22]. It also allows to estimate state variables that are
not part of the measurement vector by allowing the system
noise to propagate. The specifics applicable to this work are
described in the following.

The used state vector is defined as

x = [xcar, ycar, vx,car, vy,car, ax,car, ay,car, ψcar, ψ̇car]
T, (17)

where xcar and ycar are the (x,y) coordinates of oLCP in LTP,
vx,car and vy,car are the velocities of oLCP along the xLTP and
yLTP axes, ax,car and ay,car are the accelerations of oLCP along
the xLTP and yLTP axes, ψcar is the vehicle yaw in LTP, and
ψ̇car is the yaw rate around zLCP.

Fig. 2. Shown is a GCP as seen on aerial imagery. The UAV hovers
at 50m (left) and at 100m (right). The blurring effect of the image
prevents to unambiguously assign a pixel to a corner of the GCP.

Since the course over ground θcog in LTP of the vehicle is
defined as

θcog = atan2(vy,car, vx,car), (18)

the sideslip βcar of the car can then be calculated by

βcar = θcog − ψcar. (19)

In this work, the sideslip angle is estimated by means of a
Linear Kalman Filter (LKF) and Equation (19). This produces
better results than using an Extended Kalman Filter (EKF).
This is explained by the fact the sideslip angle is not part
of the measurement vector. Using an EKF would imply the
estimation of the sideslip angle by noise propagation, whereas
Equation (19) allows a direct calculation.

IV. ANALYSIS OF SOURCES OF ERROR

Camera-equipped UAVs are practical, versatile and cost-
effective for acquiring traffic information. But their sources
of error have not been analysed deeply enough. The most
significant sources of error are 1) the PCF to LTP Mapping,
2) the UAV stability, 3) the car labelling and detection, 4) the
bounding box, and 5) the sensor synchronization. These
sources of error are analysed and quantified in the following.

A. PCF to LTP Mapping

The literature review shows that the mapping of the GCP
to the LTP is usually performed through the use of GCPs.
Ideally, one point of the GCP can be associated with a specific
pixel on the PCF. In reality, this rarely happens. An example
of this can be seen on the Figure 2. The blurring effect that
can be appreciated on the image can be caused by image
compression, camera optics or light propagation. It is precisely
this blurring effect that prevents to unambiguously associate a
point of the GCP with a specific pixel. So, a pixel ambiguity
ζ = 1 px in both, the xPCF and yPCF axes is not uncommon.
So, the gi,PCF is rewritten as

gi,PCF =
[
xi,PCF yi,PCF

]T ± ζ. (20)

This association ambiguity has an effect on all three
parameters that map the PCF to the LTP. The case of the
spatial resolution is analysed first.



Considering a pixel ambiguity of ζ = 1 per axis and
squared pixels, the distance between the true and associated
positions of a GCP on the PCF can be of

√
2 px. This mis-

association causes an error on the spatial resolution. The
similarity in percentage ηα between the seen and the true
values of the spatial resolution is calculated by

ηα =

∣∣gi+1,PCF − gi,PCF

∣∣∣∣gi+1,PCF − gi,PCF

∣∣+ 2 ·
√

2ζ2
. (21)

The Equation (4) is then rewritten as

g′i = gi,PCF · α · ηα =
[
x′i y′i

]T
. (22)

From the Equations (21) and (22), it can be deducted that the
effect of ηα increases as gi,PCF → gi+1,PCF. In a scenario,
where the GCPs are only one pixel apart, the similarity
between the seen and true spatial resolution can drop to 26%.
In another scenario for a Full-HD image, where both GCPs
are placed on opposite diagonal corners of the picture, the
similarity can drop only to 99.87%. For example, if the true
value of

∣∣gi+1,LTP − gi,LTP

∣∣ is 100 m, a similarity of 99.87 %
will rescale it as 99.87 m, meaning a 13 cm difference.

Next, the effect on the orientation offset is analysed. This
is done in pixels to decouple errors caused by ηα. To consider
the pixel ambiguity, the Equation (6) is rewritten as

ξθimage = atan2(∆y ± 2ζ,∆x ± 2ζ), (23)

where ζ is multiplied by two because ξθimage is calculated
using two GCPs. Similar as with ηα, the effect of the pixel
ambiguity increases as gi,PCF → gi+1,PCF. In a scenario for
a Full-HD image, where the GCPs are one pixel apart, the
orientation error ηξθimage

could reach 116◦. Else, if the GCPs
are in opposing diagonal corners of the image, then ηξθimage

could reach only 0.07◦.
The orientation error affects the rotation step of the PCF

to LTP mapping. So, the effect of orientation error increases
as the points to map are farther from the rotation axis. For
the i-th corner of the bounding box, the mapping error ηbi
due to the orientation error is given by

ηbi =
∣∣∣R(ηξθimage

)
bi − bi

∣∣∣ · α. (24)

For example, if the UAV records a Full-HD video while
hovering at 50 m, bi=

[
1920 1079

]T
and ηξθimage

=116◦, then
ηbi≈124.8 m. Else, if ηξθimage

=0.07◦, then ηbi≈0.08 m.
The error propagation causes a deviation on the linear

offsets as well. The linear offset error ηξd
due to the

orientation and scaling errors is expressed by

ηξd
=

((
R
(
ηξθimage

)T (
gi,PCF · ηα

))
− gi,PCF

)
· α. (25)

In a scenario where the UAV records a Full-HD video
while hovering at 50 m, gi,PCF =

[
1920 1079

]T
, a simi-

larity of 26% and orientation error of 116◦, then ηξd
≈[

−2394 m −759 m
]T

. Otherwise, with a similarity of
99.87% and orientation error of 0.07◦, then ηξd

≈[
−3.83 m −0.96 m

]T
.

Fig. 3. A vehicle with its bounding box.

From the previous, it is deducted that the best way to
minimize errors caused by the PCF to LTP mapping, is to
locate the GCPs as far from each other as possible. Also,
since the direction of the pixel ambiguity is not stochastic, the
errors can be compensated by using different combinations
of various GCPs.

B. UAV Stability

UAVs usually drift while hovering over the LTP. This
drift introduces additional scaling, rotation and linear offsets.
However, this can be corrected by means of image registration.
The registration generally consists of three steps to find
correspondences between two images: a feature detector, a
descriptor and the matching. The goal of the detector is to
find identical interest points under varying viewing conditions.
The descriptor is a feature vector, which describes the local
area around the point of interest. The SURF [23] detector
and descriptor is used in this work. The distance between
the feature vectors is computed to match the points between
two images (matching). An interest point is found on two
images when the distance fulfills a certain criterion, e. g. a
nearest neighbor ratio matching strategy. The matches are then
fed into the MLESAC algorithm [24] to eliminate outliers,
i. e. incorrect pairs. From the remaining matching pairs, the
scaling, rotation and linear offsets are calculated and applied
to the video sequence to eliminate the effects of the drift of
the UAV.

C. Car Labelling and Detection

Another source of error that causes inaccuracies is the
labelling and later detection of the vehicle. As stated above,
Mask-RCNN is used for detecting vehicles on video se-
quences. This is done through a process in two steps: the
labelling of vehicles for the training of the network, and the
use of the trained network to detect vehicles on new video
material. To make the detection more robust, neither tires
nor mirrors are labeled as part of the vehicle; i. e., only the
chassis is labeled as vehicle.

Similar as with the GCPs, often the pixels cannot be un-
ambiguously associated with the car. So, a labelling/detection
error of 1 px or more is common. The effect of this error is
propagated to the bounding box. An example of this can be
seen on Figure 3.



D. Bounding Box

As explained in Section III-C, the measurement vector for
the KF is generated from the vehicle bounding box. Since
the bounding box is created from the detected shape of the
vehicle, this detection is the first source of inaccuracy. It is
then realistic to have a pixel ambiguity of ζ = 1 px for each
side of the bounding box.

The next bounding box-related source of error is the
perspective. Figure 1 shows an ideal case for the creation of
the bounding box, where the complete shape of the vehicle
is orthonormal to the UAV, and so can be mapped to the LTP
as shown in the Section III-B. However, this is not possible
because of relief displacement. This optical effect occurs
due to camera perspective and the height of the seen objects.
It has two consequences for the filmed objects: First, their
position shifts away from the principal point (image centre)
as their height increases. Second, the dimensions of their
bounding box grow if a vehicle side is occluded. A graphical
representation of this is shown on Figure 4.

If the height of the object is known, the relief displacement
can be corrected. However, because of the combination of
camera perspectives, vehicle shapes and poses; the sides
of the bounding box could be projections of points with
different heights. The corners would then be intersections
of projections at different heights. So, the height in LTP of
the corners of the bounding box is not known. Even when
manually analysing the video material, it is common that
pixels cannot be conclusively associated to specific vehicle
parts. An example of this is shown in Figure 3.

A statement about the height can be done only for the
corner that is closest to the vertical of the drone. Given that
only the body is labelled as a vehicle (Section IV-C), it can
be deducted that the two sides of the bounding box that
are closest to the middle of the picture are tangent to the
bottom of the car. So, the intersection of these lines is at this
height as well. Knowing the height of this corner, its relief
displacement can be corrected as follows.

Defining the horizontal and vertical resolution of the image
as rx and ry respectively, the coordinates in PCF of bi with
respect to the middle of the picture are given by[

xi,seen
yi,seen

]
=

[
xi,PCF − rx

2
yi,PCF − ry

2

]
. (26)

The shift correction ∆x,PCF along the xPCF axis is calculated
on the PCF as follows

∆x,PCF =
xi,seen · hi,LTP

hUAV
, (27)

where hi,LTP is the height of the i-th corner on LTP and hUAV
is the hovering altitude of the UAV in LTP. The correction
∆y,PCF along the yPCF axis is calculated by analogy. The
corrected coordinates bi,c of bi are then given by

bi,c = bi −
[
∆x,PCF ∆y,PCF

]T
. (28)

Since the detection error of ±1 px per axis is transferred to
the bounding box, then bi could have an error of

√
2 px. If

this error occur towards the principal point, then ∆x,PCF and

Fig. 4. Shown is: the line of sight of the UAV with red solid line,
the seen vehicle position with green dashed line and the true vehicle
position with blue dotted line.

∆y,PCF add an error towards the principal point as well. The
error ηb,i of bi due to the shape detection and correction of
the relief displacement is given by

ηb,i =

(√
2 +

hi,LTP

hUAV

)
· α. (29)

As an example for a sedan with ±15 cm ground clearance
and a UAV hovering at 100 m, then ηb,i ≈ 0.04 m.

The corrected bounding box is reconstructed to find the
centre of the vehicle. Let the width wcar and length lcar of
the vehicle be known, the Equation (14) hold, the spatial
resolution have no errors, b1 be the corner closest to the
image centre and its relief displacement be corrected. Then,
b1 is used as base for scaling bj and bk as follows

bj,scaled =

(
lcar

s (2) · α
· (bj − b1)

)
+ b1, and (30)

bk,scaled =

(
wcar

s (1) · α
· (bk − b1)

)
+ b1, (31)

where k is the element of BPCF associated with s (1). The
corrected centre of the vehicle is then calculated by

oin =
bj,scaled + bk,scaled

2
. (32)

As stated before, the height cannot be easily determined for
the two sides of the bounding box farthest from the vertical
of the drone. Considering passenger vehicles, this height
can range from hi,min = 0.11 m (ground clearance of sport
vehicles [25][26]) and up to hi,max = 1.85 m (roof of multi-
purpose vehicles [27][28]). If the relief displacement is not
corrected, the maximum positioning error ηscale due to wrong
vehicle dimensions is given by

ηscale =

√
x2i,seen + y2i,seen · α · (hi,max − hi,min)

2 · hUAV
. (33)

For example, if the UAV hovers at 50 m and bi is on one
corner of the image, then ηscale ≈ 0.63 m.

From the discussion above it follows that the best way
to minimize positioning errors due to relief displacement,
is to correct it only for the corner nearest to the centre of
the image, and to re-scale the bounding box. If the vehicle
measures are not known, generic values can be taken from
the literature [21].



Fig. 5. Shown is: the PPS pulse from a SatNav receiver with blue,
the shutter exposure time with green, and the synchronization error
with red.

E. Sensor Synchronization

Another relevant source of error is the synchronization
of the sensors. A best practice approach is to use of the
Pulse Per Second (PPS) from SatNav receivers and thus to
employ the Universal Time Coordinated (UTC-time) as a
common timeline. Atomic clocks aboard satellites [29] and
negligible delays between receivers make this the best option.
Unfortunately, most consumer-grade UAVs have no option for
triggering the camera with a PPS pulse, nor do they provide
a frame-accurate UTC timestamp.

In this work, the synchronization process is performed
using as reference the light of the in-built LED of a Neo-
6M [30] SatNav receiver as follows. The rising edge of the
PPS pulse indicates the start of every second. This rising
edge is used as a trigger for lighting up a LED that stays on
for a determined period of time so that the light can be seen
on the image to be processed. Since this LED is part of the
SatNav module, the latency between the PPS reception and
LED lighting up is negligible. So, the start of each second
can be known with frame-accuracy by recording this LED.
A graphical representation of this is shown in Figure 5. The
limitation of this technique is that videos are not a continuous
image, but a series of static pictures. So it is not known if
the LED lights up when the shutter is closed, creating a
synchronization error. The maximum synchronization error
ητ is given by

ητ =
1

τFR
, (34)

where τFR is the camera frame rate in frames per second (fps).
In this work, 50 fps are used. So ητ ≤ .02 s. The positioning
error ηpos caused by ητ is given by

ηpos =
√
v2x,car + v2y,car · ητ , (35)

and the velocity error ηvel caused by ητ is given by

ηvel =
√
a2x,car + a2y,car · ητ . (36)

As an example with a vehicle moving with 50 km/h, braking
with 5 m/s2 and a UAV hovering at 100 m recording a video
with 50 fps, then ηpos ≤ 0.25 m and ηvel ≤ .09 m/s.

It can be deduced from what is discussed above that
synchronization errors, even in the millisecond order, have
a statistically significant influence. Also, if no PPS trigger
is available, the best way to minimize errors due to synchro-
nization is to film the on-board LED of SatNav receivers.

Benchmark results for one test drive
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Fig. 6. Shown are the benchmark results for one test drive with the
UAV hovering at 75m.

V. BENCHMARK OF THE ESTIMATED VEHICLE STATE

The benchmark process is detailed in the following. The
estimated state vector is compared to the outputs of an
Automotive Dynamic Motion Analyzer (ADMA) G-Pro+ [31].
This Inertial Navigation System (INS) is equipped with servo-
accelerometers, optical gyroscopes and receives Real-Time
Kinematic (RTK) correction data. The estimated sideslip angle
is compared to the output of a Correvit S-Motion [32]. This
sensor estimates velocities in the longitudinal and lateral axes
by means of an optical grid [33]. The reference sideslip is
computed analog to the Equation (18). Finally, the UAV used
is the DJI Phantom 4 Pro V2 [34].

To generate the test data, a test vehicle is equipped with
the reference sensors and is driven by a human in a random
manner on a paved test track. No driving robot is used and
no specific maneuver is driven in order to avoid tuning KF
parameters to fit a specific trajectory, maneuver or driving
style. The test drives include standstill, walking velocity, high
acceleration, hard braking, tractive and non-tractive driving
(drifting) [35]. The velocity is limited to 50 km h−1. No
markers are placed on the vehicle to approach real-testing
conditions on open roads. To give variety to the test dataset,
the videos are taken at three hovering altitudes: 50 m, 75 m
and 100 m. The videos are recorded with 50 fps and 4K
resolution (3840 px x 2160 px), which are later compressed



to FullHD (1920 px x 1080 px). Four videos per height are
recorded.

Figure 6 shows the benchmark results for one of the test
drives with the biggest errors. For this trial run, the test
vehicle is driven in such a manner to make it drift. This
includes full-throttle acceleration, hard braking and sudden
steering.

The estimated position, course over ground and yaw for
this trial have a mean error of 19.16 cm, 4.71◦ and 1.02◦

respectively. This precision is equivalent to that of consumer-
grade INSs.

Figure 6 shows that the estimated velocity is affected by a
dampening effect and by a time delay. Both are caused by the
Kalman gains. A test-specific tuning of the gains could help
to reduce the velocity error for this trial, but would increase
the error for other tests with lower vehicle dynamics.

The deviation of the estimated sideslip that is shown on
Figure 6 is caused mainly by the velocity error. This is
because the sideslip angle is estimated using the course over
ground, which is calculated from the velocity (Section III-D).
During this test, a sideslip angle of 27.69◦ is reached, which
clearly indicates that the vehicle is drifting.

The error of the acceleration is explained by two facts:
First, the estimated acceleration is calculated by system noise
propagation (Section III-D), so it is low-pass filtered. Second,
the reference acceleration that is measured by the INS includes
vibrations from the drivetrain, the tyres and the suspension,
as well as from the pitch and roll of the vehicle.

Figure 7 shows the cumulative frequency diagrams for all
performed tests. The benchmark results show that, once steps
are taken to minimize errors, the precision of the estimated
vehicle state is comparable to the precision of consumer-grade
sensors, such as silicon-based INSs or SatNav receivers with
no correction data. This with the advantage of being able
to record information for various traffic participants with
a single UAV. Also, the precision of the estimated sideslip
angle allows to differentiate between tractive and non-tractive
driving. This is a relevant state variable to determine the
vehicle stability.

VI. CONCLUSIONS

In this work, an evaluation of the accuracy of camera-
equipped UAVs as tools for traffic data acquisition is pre-
sented. This includes a detailed description of the vehicle state
estimation from aerial imagery, an analysis and quantification
of the most relevant sources of error, and a benchmark of
the estimated vehicle state with state-of-the-art reference
sensors. The findings can then serve as a best-practice guide
to minimize errors in future works. The source code is publicly
available to aid researchers adapt KF gains for specific tasks.

The results of the benchmark show that, once steps are
taken to minimize errors, camera-equipped UAVs are very
attractive tools for automotive data acquisition. This because
relatively low effort is required, while still obtaining a vehicle
state with a precision comparable to that of consumer-grade
INSs. This with the added benefit of recording various
vehicles with a single device.

Benchmark results
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Fig. 7. Shown are the cumulative frequency diagrams of the
benchmark results for three hovering altitudes.

Being the correction of the relief displacement the source
of error with the most unknowns, it has the biggest improving
potential. If the height of the vehicle pixels is known in a
deterministic manner, the positioning error can be greatly
reduced.

VII. ACKNOWLEDGEMENT

The authors acknowledge the financial support by the
Federal Ministry of Education and Research of Germany
(BMBF) in the framework of FH-Impuls (project number
03FH7I02IA).

REFERENCES

[1] D. Schramm, M. Hiller, R. Bardini et al., Modellbildung und Simulation
der Dynamik von Kraftfahrzeugen. Springer, 2010, vol. 124.

[2] M. Abe, Vehicle handling dynamics: theory and application.
Butterworth-Heinemann, 2015.

[3] D. Bastow, G. Howard, and J. P. Whitehead, Car suspension and
handling. SAE international Warrendale, 2004.

[4] Data from sky. RCE systems s.r.o. [Online]. Available: https:
//datafromsky.com/

[5] O. Gallitz, O. D. Candido, M. Botsch, and W. Utschick, “Interpretable
feature generation using deep neural networks and its application to
lane change detection,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), Oct 2019, pp. 3405–3411.

[6] F. Kruber, J. Wurst, and M. Botsch, “An unsupervised random forest
clustering technique for automatic traffic scenario categorization,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Nov 2018, pp. 2811–2818.



[7] H.-J. Song, Y. Chen, and Y.-Y. Gao, “Velocity calculation by automatic
camera calibration based on homogenous fog weather condition,”
International Journal of Automation and Computing, vol. 10, 04 2013.

[8] M. Kampelmühler, M. G. Müller, and C. Feichtenhofer, “Camera-
based vehicle velocity estimation from monocular video,” CoRR, vol.
abs/1802.07094, 2018. [Online]. Available: http://arxiv.org/abs/1802.
07094

[9] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:
A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving systems,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 2118–2125.

[10] J. Bock, R. Krajewski, T. Moers, L. Vater, S. Runde, and L. Eckstein,
“The ind dataset: A drone dataset of naturalistic vehicle trajectories at
german intersections.”

[11] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION Dataset: An INTERnational, Adversar-
ial and Cooperative moTION Dataset in Interactive Driving Scenarios
with Semantic Maps,” arXiv:1910.03088, 2019.

[12] G. Guido, V. Gallelli, D. Rogano, and A. Vitale, “Evaluating
the accuracy of vehicle tracking data obtained from unmanned
aerial vehicles,” International Journal of Transportation Science
and Technology, vol. 5, no. 3, pp. 136 – 151, 2016, unmanned
Aerial Vehicles and Remote Sensing. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2046043016300272

[13] V. Sunita Devi, “Measurement of relief displacement from vertical
photograph.” International Journal of Science.

[14] Video vbox pro | 10 or 20hz. RACELOGIC. [Online].
Available: https://www.vboxautomotive.co.uk/index.php/en/products/
video-data-loggers/video-vbox-pro

[15] F. Kruber and E. Sánchez Morales, “Vehicle Detection and
State Estimation with Aerial Imagery.” [Online]. Available: https:
//github.com/fkthi

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[17] C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. Bouganis,
“DroNet: Efficient convolutional neural network detector for real-
time UAV applications,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), 2018.

[18] Q. Li, L. Mou, Q. Xu, Y. Zhang, and X. X. Zhu, “R3-net: A deep
network for multi-oriented vehicle detection in aerial images and videos,”
CoRR, 2018. [Online]. Available: http://arxiv.org/abs/1808.05560

[19] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,”
in Proceedings of the International Conference on Computer Vision
(ICCV), 2017.

[20] Waleed Abdulla, “Mask R-CNN for object detection and instance
segmentation on Keras and TensorFlow,” 2017. [Online]. Available:
https://github.com/matterport/Mask_RCNN

[21] F. Kruber, E. Sánchez Morales, S. Chakraborty, and M. Botsch, “Vehicle
position estimation with imagery from unmanned aerial vehicles,” in
2020 IEEE Intelligent Vehicles Symposium (IV), 2020.

[22] R. Kalman, “A new approach to linear filtering and prediction problems,”
no. 1, pp. 1–12, 1960.

[23] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds.

[24] P. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with
Application to Estimating Image Geometry,” Computer Vision and
Image Understanding, 2000.

[25] V. der TÜV e.V., “Merkblatt 751,” 2008.
[26] J. M. BARROSO, COMMISSION REGULATION (EU) No 678/2011.

Office for Official Publications of the European Communities, 14 July
2011.

[27] K. Van Miert, REGULATION (EEC) No 4064/89 MERGER PROCE-
DURE. Office for Official Publications of the European Communities,
1999.

[28] G. Heydinger, R. Bixel, W. R. Garrott, M. Pyne, J. G. Howe, and
D. A. Guenther, Measured Vehicle Inertial Parameters-NHTSAs Data
Through November 1998. Society of Automotive Engineers, 1999.

[29] J. Nelson. What is an atomic clock? National Air Space
Agency. [Online]. Available: https://www.nasa.gov/feature/jpl/
what-is-an-atomic-clock

[30] NEO-6, u-blox AG, 12 2011, rev. E.

[31] Adma family gps/inertial system automotive/railway. GeneSys
Elektronik GmbH. [Online]. Available: https://www.genesys-offenburg.
de/en/products/adma-family-gpsinertial-system-automotiverailway/

[32] Correvit s-motion datenblatt. Kistler. [Online]. Available: https:
//www.kistler.com/de/produkt/type-2053--2055/

[33] J. Haus and N. Lauinger, “Optische gitter: Die abbildung der realität –
75 jahre berührungslose dynamische meßtechnik auf der basis optischer
gitter,” Laser Technik Journal, vol. 4, pp. 43–47, 04 2007.

[34] Techn. daten. SZ DJI Technology Co., Ltd. [Online]. Available:
https://www.dji.com/de/phantom-4-pro-v2/specs

[35] M. Abdulrahim, “On the dynamics of automobile drifting,” SAE
Mobilus, 04 2006.


